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Abstract
Performing a subject specific and accurate predictive numerical gait simulation can be of great help in many clinical tasks.
Though predictive methods often take into account the modifications applied to a reference motion, they are not always able to
include the characteristics and the stability of the predicted motion. We propose an optimization-based approach that includes
the resulting characteristics of the predicted motion. The optimization is enhanced by the use of parametric curves to represent
the motion trajectories. Experimental studies on subjects with different gait patterns confirmed that our method preserves the
characteristics of the gait.

CCS Concepts
•Computing methodologies → Physical simulation; Interactive simulation; Optimization algorithms; Control methods;
•Applied computing → Health informatics;

1. Introduction1

Computer-aided predictive simulation makes it possible to test a2

wide diversity of gait scenarios on a numerical human representa-3

tion. With improvements on accuracy and patient specificity such4

simulation can nowadays be used in clinical procedure. This study5

aims at predicting gaits with emphasis on the conservation of a pa-6

tient specificity. We make the distinction between patient specifici-7

ties related to its musculoskeletal model and specificities due to8

additional factors (e.g. footwear, pain, chronic disease).9

Broadly speaking, we can identify two categories of approaches:10

the implicit approach and the explicit approach. In the implicit ap-11

proach, a control optimal problem is solved. The dynamics of the12

system is turned into a set of constraints and an objective function is13

defined. The states and control signals are the unknowns. While the14

forward explicit approach uses an adaptive system to produce the15

control signals, and then the system dynamics is integrated. Meth-16

ods based on implicit approaches can achieve predictions with a17

good accuracy and in a limited amount of time, but they are not18

suited for interactive simulation [FSD∗19]. Most forward explicit19

methods obtain predictive motions from the tracking of a modified20

reference motion [LPLL19]. We propose a different approach for21

the search of the modifications. Our method uses an optimization of22

a cost function that includes the evaluation of the simulated motion.23

Running such optimization-based simulation is a time-consuming24

routine. To overcome this shortcoming, we reduce the search space25

by leveraging a parametric representation of the reference motion26

and knowledge on the simulated gait pattern.27

2. Method28

2.1. Explicit forward simulation29

Our explicit forward predictive simulator uses a skeletal model30

placed within a physics-based virtual environment and actuated31

by an adaptive system. This adaptive system generates appropri-32

ate control signals to maintain balance, to produce a motion sim-33

ilar to a reference motion and to ensure additional tasks such as34

minimizing the cost of transportation. At each time step, hypothet-35

ical servo-motors placed at each degree of freedom of the model36

receive signals from the adaptive system. Once the signals are con-37

verted into angular moments, the system dynamics is integrated by38

the physics engine.39

Our adaptive system is based on a neural network and stable pro-40

portional derivative controllers (SPDC) for each degree of freedom41

of the virtual character. The input of each SPDC is the sum of an42

open-loop angular target and an adaptive correction. The open-loop43

angular target is evaluated from the kinematics of one reference gait44

cycle. The adaptive correction is computed by the neural network45

from the current pose of the character and the current percent of46

gait cycle denoted as φ.47

The neural network is trained to maintain balance using a data-48

driven approach. Our goal is to learn a control strategy that pro-49

duces motions that are similar to the reference kinematics. The cost50

function is composed of a weighted combination of terms com-51

puted from the difference between the current and the reference52

model’s state. An additional term aggregates the sum of the angu-53
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lar moments, to reflect the cost of transportation. We hypothesis54

that training the neural network on more than one reference kine-55

matics will make it more robust to variations on the reference input,56

and therefore will allow for prediction.57

We first processed the raw kinematics data by rotating the mo-58

tion to have every mean heading of each motion clip in one di-59

rection and setting φ = 0 on the first right foot contact. This way60

the neural network will not be specialized for a particular walking61

direction and timing. In the first set, the initial condition (C0), a62

subject walked normally at a self selected speed. In the second set,63

the altered condition (C1), a subject walked also at a self selected64

speed but was wearing a restrictive brace on the right knee, thus65

imposing a stiff-knee gait. The restriction was set to 20 degrees of66

flexion.67

2.2. Gait predictions68

Once the neural network is trained, the reference kinematics data69

can be modified to obtain new motions. Predictive motions are thus70

found by searching sets for modifications that produce valid simu-71

lations. The quality of the predictive simulations is measured with72

an objective function composed of a weighted combination of two73

terms. The first term estimates the relevancy of the produced mo-74

tion by penalizing simulations for which the virtual character falls75

or collisions occur between the legs during the first 15 gait cycles.76

The second term depends on the targeted gait characteristics. In our77

example, the stiff-knee gait, it penalizes the knee flexion, measured78

over the last 10 gait cycles.79

Each simulation takes about 1s to execute (20 times faster than80

real-time). It was important to use a method that converge with81

a minimum number of evaluation and without the need to eval-82

uate gradients because the problem is discontinuous. We chose83

the Covariance Matrix Adaptation Evolution Strategies (CMA-ES)84

method as our optimization process [Han07].85

With the discrete representation of the motion, there are more86

than 1000 parameters to optimize. CMA-ES shows best perfor-87

mance with less than 100 parameters so two strategies were used88

to reduce the search space. First, we compute a parametric approx-89

imation of each joint trajectory of the kinematics data, allowing us90

to model a full trajectory from few control points only. Then, a vi-91

sual comparison between trajectories from both conditions C0 and92

C1 and knowledge from gait analysis of the targeted pattern is used93

to identify a subset of the trajectories to include in the optimization.94

2.3. Parametric trajectories representation95

We were looking for a parametric description of the trajectories96

with the following features : accurate approximation with a small97

number of parameters, C2 continuity and fast evaluation. Non-98

Uniform Rational Basis Spline (NURBS) presents theses advan-99

tages. We choose to use cubic periodic NURBS for all trajectories100

except for the transverse plan pelvis coordinates. For those coor-101

dinates we chose cubic B-splines. The optimum placement of the102

control points was computed as a weighted combination of terms103

relative to similarity, relative control points placement and weight104

distribution. Relative control points placement is used to ensure C2
105

continuity as cubic NURBS will lose this property if two or more106

control points have the same x-axis coordinate.107

The similarity term is computed as the sum of normalized square108

residuals between the original data and the NURBS evaluation, for109

each frame of the original trajectories. The other terms are respec-110

tively computed as the minimum distance between two consecutive111

control points, the mean value of the weights, and the minimum of112

the weights. We use the CMA-ES method for the optimization as113

the problem presents discontinuities.114

First, we chose to exclude modifications of the transverse plan115

pelvis coordinates because maintaining C2 continuity would be un-116

necessarily complex. Then, for each NURBS control point there are117

3 parameters: the x-axis coordinate, the y-axis coordinate and the118

weight. The search space reachable by modification of the trajec-119

tories is reduced by preventing to modify all parameters, but mod-120

ifying only the y-axis coordinate allows us to maintain the C2 con-121

tinuity and does not reduce much the search space compared to122

the only modification on x-axis or on the weight. Moreover, having123

only one parameter per control point increases the complexity of124

the prediction search as low as possible.125

3. Results126

Effect of multiple gait training When the neural network is127

trained on one kinematics reference data of the C0 set, it is not128

able to produce stable motions for other reference data of the same129

set. On the other hand, if the training is performed using all refer-130

ence data from the set, the trained neural network is able to produce131

stable motions for all of them.132

Parametric trajectories representation We designed our para-133

metric trajectories with 8 control points per NURBS and 20 con-134

trol points per B-Splines. The error due to this representation was135

computed as the normalized square residuals between the original136

discrete values and the evaluations of the parametric trajectories.137

The mean angular error was 0.37×10−3 degrees and the mean po-138

sition error was 5.3 millimeters (see Table 1).The approximation139

of the pelvic antero-posterior position has a large error compared140

to the other approximations but this degree of freedom has larger141

variation during the cycle.142

Reduction of the search space Using our parametric trajectories143

we still have 152 parameters to optimize. With knowledge from lit-144

erature on the stiff-knee gait pathology [LOW12,KFRR00,IKS∗12,145

SPRHW08] and analysis of the C0 and C1 sets we chose to select146

the following trajectories to reduce the search space to 44 parame-147

ters : pelvic obliquity, pelvis height, lumbar bending, hip abduction148

(left and right legs) and knee flexion (right swing leg). Details on149

the trajectories are given in Table 2.150

Prediction of stiff-knee gaits We use the neural network trained151

with the complete set of C0 gaits. The target maximum right knee152

flexion was set to the value observed in the C1 condition.153

The optimization successfully found a set of modifications that154

match the constraints. To assess the advantage of the simulation-155

based optimization we analyze 100 simulations generated with var-156
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Table 1: Mean errors and standard deviations per joint over 16 ref-
erence motions. ∗ trajectories have been represented with B-Spline.
When two values are given, the first one refers to the left side and
second one to the right side.

Degree of freedom
Mean errors Standard dev.

(10−3) (10−3)

Pelvic obliquity (deg) 0.075 0.046
Pelvis rotation (deg) 0.031 0.017
Pelvis sagital angle (deg) 0.29 0.19
Pelvis antero-posterior∗ (mm) 16 2.7
Pelvis height (mm) 0.056 0.039
Pelvis transversal∗ (mm) 0.058 0.026
Lumbar bending (deg) 0.098 0.047
Lumbar rotation (deg) 0.36 0.19
Lumbar flexion (deg) 0.32 0.2
Hip abduction (deg) 0.15 0.15 0.09 0.087
Hip rotation (deg) 0.81 1.2 0.44 1.3
Hip flexion (deg) 0.42 0.51 0.22 0.34
Knee flexion (deg) 0.16 0.16 0.03 0.069
Ankle dorsiflexion (deg) 0.97 0.72 0.78 0.69
Foot eversion (deg) 0.095 0.12 0.062 0.16

Table 2: Results from the comparison between C0 and C1: o means
an observed difference, l means that the literature reports a differ-
ence and ∗ indicates if selected for optimization. When two values
are given, the first one refers to the left side and second one to the
right side.

Degree of freedom Right swing leg Right stance leg

Pelvic obliquity ol∗ o∗
Pelvis rotation o −
Pelvis sagital angle − o
Pelvis height l∗ o∗
Pelvis transversal − −
Pelvis antero-posterior − −
Lumbar bending o∗ o∗
Lumbar rotation − −
Lumbar flexion − −
Hip abduction ol ∗ ol∗ o∗ o∗
Hip rotation − − − o
Hip flexion − − − −
Knee extension o ol∗ o −

ious starting φ. The starting φ was randomly selected with maxi-157

mum variation of 2% from the one used during the optimization158

process.159

On Figure 1, we observe that the simulated kinematics has160

been affected by the modifications of the reference motion. Dis-161

persion between simulated kinematics increased and is more pro-162

nounced during the first half of the swing phase of the right leg163

(φ < 25%). The mean value of the simulated kinematics has signif-164

icantly changed for many degrees of freedom even for the trajecto-165

ries that were not included in the optimisation. The left hip flexion166

(a) Pelvic obliquity∗ (b) Pelvis height∗

(c) Lumbar bending∗ (d) Left hip abduction∗

(e) Right hip abduction∗ (f) Right knee flexion∗

(g) Lumbar flexion (h) Right hip flexion

(i) Left hip flexion

Figure 1: Joint kinematics during the 13th gait cycle. Green curves
are C0, blue curves are C1 and red curves are predictions. ∗ Refer-
ence trajectories have been modified by optimization.

(Fig. 1i) during the second half of the stance phase of the right leg167

(75% < φ < 100%) is an example. The mean value of the simulated168

kinematics has consistently shifted towards the value observed in169

the C1 condition.170

We notice that the constraint on the right knee is satisfied for171

all the 23 tested and successful predictions but a hyperextension is172

observed at right toes-off (Fig. 1f).173
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4. Conclusion174

We propose a method for predictive simulation of human gaits175

based on the optimization of an objective function including the176

evaluation of the simulated motion. Simulation are obtained from177

modifications of reference kinematics data. A reduction of the178

search space is used to compensate for the computational cost of179

the simulations. This reduction is achieved with a parametric rep-180

resentation of the kinematics data and with the selection of a subset181

of trajectories. Knowledge about the simulated gait pattern is used182

to select trajectories. Using the proposed method, we were able183

to produce stable predictions for a stiff-knee gait with significant184

severity.185

Future works will have two objectives : to increase the flexibility186

of the optimization process and to reduce the dispersion between187

the predicted kinematics data. The flexibility could be increased188

by finding the optimal number of control points for each degree of189

freedom. This will also reduce the size of the search space and al-190

low us to include additional parameters in the optimization process.191
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